IDEAL THEORY AND PRUFER DOMAINS

FELIX GOTTI

FRACTIONAL IDEALS
Throughout this section, R is an integral domain.

Definition 1. A fractional ideal J of an integral domain R is an R-submodule of qf(R)
for which there exists a nonzero r € R such that »J is an ideal of R.

So fractional ideals of R are subsets of qf(R) of the form %], where r € R and [ is
an ideal of R. A fractional ideal J is called principal if there exists z € qf(R) such that
J = Rx. It is clear that every ideal (resp., principal ideal) of an integral domain is a
fractional ideal (resp., principal fractional ideal). Conversely, if a fractional ideal (resp.,
principal fractional ideal) of R is contained in R, then it is an ideal (resp., principal

ideal).
Proposition 2. For an integral domain R, the following statements hold.

(1) Every finitely generated R-submodule of qf(R) is a fractional ideal.
(2) If R is Noetherian, then every fractional ideal is finitely generated.

Proof. (1) Let J be a finitely generated R-submodule of qf(R), and take ¢1,...,q, € J
such that J = Rq; + -+ - + Rg,. For each ¢ € [1,n], we can write ¢; = r;/s; for some
ri, s € R with s; # 0. After setting s = s1---s,, we see that sqi,...,5¢, € R. As a
result, sJ = Rsq; + - - - + Rsq, is an ideal of R. Hence J is a fractional ideal.

(2) Now suppose that R is Noetherian, and let J be a fractional ideal of R. Then r.J
is an ideal of R for some nonzero r € R and, because R is Noetherian, we can write r.J =
Ray + -+ - + Ray, for some aq, . ..,a; € R. Hence the equality J = Ray/r+ -+ Rag/r
holds, and so J is finitely generated. 0

We can define the sum, product, and quotient (or colon) of two fractional ideals in
the same way it is done for ideals and, in this case, we obtain fractional ideals.

Proposition 3. Let R be an integral domain. Then the following statements hold for
any fractional ideals J, and Jo of R.

(1) Ji + Jo is a fractional ideal.
(2) J1NJy is a fractional ideal.
(3) JiJy = {Z?:l ab; | neN, ay,...,a, € Ji, and by,...,b, € Jg} is a frac-
tional ideal.
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(4) (J1:J2) ={q € qf(R) : qJo C J1} is a fractional ideal if Jy is nonzero.

Proof. (1) We know J; 4+ Js is an R-submodule of qf(R). In addition, if 1J; C R and
roJy C R for some nonzero ry,ry € R, then rire(Jy + Jo) = ro(r1J1) + r1(r2J2) C R.

(2) The intersection J; N Jy is clearly an R-submodule of qf(R). Also, if r € R is a
nonzero element such that rJ; C R, then r(J; N J2) CrJ; C R.

(3) From the given definition, one can readily see that J;Js is an R-submodule
of qf(R). In addition, if r;,rs € R are nonzero elements such that rJ; C R and
roJs € R, then ryre Y ab; = > o (r1a;)(rab;) € R for any n € N, ay,...,a, € Ji,
and bl, . ,bn c JQ. Hence T1T2J1JQ Q R.

(4) It is routine to check that (J; : J2) is an R-submodule of qf(R). Take nonzero
elements r1,7o € R such that r;J; C R and rJ, C R. Fix a nonzero d € Jy, and
set r := ryrod. Then r # 0 and r € r(r2Js) € R C R. In addition, for any
q € (Jy : Jy), the fact that ¢J; C J; implies that rq = r112(qd) € ror1J; € 1R C R.
Hence r(J; : J2) C R. O

Since multiplication of fractional ideals is clearly associative, it follows from Proposi-
tion 3 that the set .# (R) of nonzero fractional ideals of R is a commutative semigroup
under multiplication with identity element R.

Definition 4. A nonzero fractional ideal of R is called invertible if it is invertible as
an element of the semigroup % (R).

So if J is an invertible fractional ideal of R, then there is only one inverse of J in
Z(R), an it is not hard to verify that this inverse is (R : J). We let .#(R) denote
the set of invertible elements of .#(R). Clearly, .#(R) is a subgroup of . (R). It is
convenient to let J~! denote the fractional ideal (R : J) even when J is not invertible,
and we do so. If J is a nonzero principal fractional ideal and ¢ € qf(R) satisfies J = ¢R,
then it follows immediately that J=! = ¢~ R, and so J~'J = R. Thus, every nonzero
principal fractional ideal is invertible, and so the set Prin(R) consisting of all nonzero
principal fractional ideals of R is a subgroup of .#(R). Putting all together we obtain
the following proposition.

Proposition 5. If R is an integral domain, then Z(R) is an abelian group, and
Prin(R) is a subgroup of #(R).

As the following example illustrates, not every finitely generated fractional ideal of
an integral domain R is invertible, even when dim R = 1.

Example 6. Consider the ring R = Flx,y]/(y* — ), where F is a field. The as-
signments x — t? and y — t* determine a ring isomorphism R = F[t? 3]. Identify
R with F[t? t3], and consider the ideal I = Rt* + Rt>. Then (R : I) =t (R + Rt)
and, therefore, I(R : I) = Rt + Rt?> + Rt3 C Rt. As a result, [ is a finitely generated
ideal that is not invertible. Finally, observe that dim R = 1 because the extension
F[t?,13] C F[t] is integral.
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Invertible ideals, on the other hand, are finitely generated.

Proposition 7. For an integral domain R, the following statements hold.
(1) Ewvery invertible (fractional) ideal of R is finitely generated.
(2) If R is local, then every invertible (fractional) ideal is principal.

Proof. (1) Let I be an invertible (fractional) ideal of R. Take .J to be the fractional
ideal satisfying I.J = R, and write 1 = """  a;b; for ay,...,a, € [ and by,...,b, € J.
Then for every = € I, we see that z = )" a;(xb;). Since zb; € R for every i € [1,n],

it follows that z € Ra;+---+ Ra,,. SoI C Ra;+---+ Ra,. Since the reverse inclusion
also holds, I is a finitely generated ideal.

(2) Let R be a local ring with maximal ideal M. Let I be an invertible (fractional)
ideal of R with inverse J. As in the previous part, we can write 1 = > | a;b; for
ai,...,an, € Tand by,...,b, € J. As 1 ¢ M, we see that a;b; ¢ M for some j € [1,n].
Since R is local, a;b; € R*. Then for every x € I, we obtain that z = u(zb;)a; € Ra;,
where u := (a;b;)"' € R. Hence I C Ra;. Since the reverse inclusion clearly holds, [

is a principal ideal. O

Therefore we have the following diagram of implications, where F.I. stands for frac-
tional ideal and f.g. for finitely generated.

Noetherian

local
. . <—— . <;: <
Principal F.I. Invertible F.I. f.g. F.I.

Recall that an R-module is projective if it is a direct summand of a free R-module.
We have seen before that an R-module is projective if and only if there exists a free
R-module F' and R-module homomorphisms a: F — M and $: M — F such that
aof = 1p. We conclude this lecture characterizing invertible ideals in terms of
projective modules.

Theorem 8. Let R be an integral domain. Then a nonzero fractional ideal of R is
wnvertible if and only if it is a projective R-module.

Proof. For the direct implication, suppose that .J is an invertible fractional ideal. Write
1=5" wy forxy,...,x, € Jand y1,...,y, € J7'. Let F be a free R-module with
basis elements my, ..., m,, and let a: F' — J be the R-module homomorphism induced
by the assignments m; — x; (for every i € [1,n]). One can easily verify that the map
B:J — F defined by f(z) = >, (zy;)m; is an R-module homomorphism. Now we
see that

(@oB)(@) = a( D (egm:) = Y (wy)rs ==
i=1 i=1
for every x € J. Hence ao 8 =1, and so J is a projective R-module.
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For the reverse implication, suppose that .J is a nonzero fractional ideal of R, which
is a projective R-module. Then there exist a free R-module F' and R-module homomor-
phisms a: F — J and 3: J — F such that aof8 = 1;. Let S be a free generating set of
F. Now let r be a nonzero element of J, and write 5(r) = > | r;m;, where ry,...,7, €
R and my, ..., m, are distinct elements in S. Set a; = a(m;) and ¢; = r;/r € qf(R) for
every i € [1,n]. For each x € J, we can write §(z) = Y | x;m; + Y .y Cpym, Where
T:=S\{my,...,m,} and z1,...,2,,¢n € R for each m € T (here ¢,, = 0 for all but
finitely many m € T'). After considering coefficients in

Z(mn)m, =x0(r) =rf(z) = Z(rmi)mi + Z(rcm)m,

i=1 i=1 meT
we can easily see that rc,, = 0 for all m € T, and so that ¢;z = (r;/r)xr = z; € R for
every i € [1,n]. Hence ¢; € J~! for each i € [1,n]. Since r # 0, from

i=1 i=1 i=1 i=1
we obtain that > | a;¢; = 1, which implies that JJ~* = R. Hence one can conclude
that J is invertible. 0

EXERCISE

Exercise 1. Let R = Z[\/=3] := {a + by/=3 | a,b € Z}, and consider the fractional
ideal J := R+ Rw, where w is the primitive cube root of unity —% + %\/—_3

(1) Compute J~* and JJ L.

(2) Is J an invertible fractional ideal of R?

Exercise 2. Let R be an integral domain, let S be a multiplicative subset of R, and
let I is an ideal of R. Prove that if I is invertible in R, then S™'I is invertible in
S7'R.

Exercise 3. Let R be an integral domain having finitely many maximal ideals. Prove
that every invertible fractional ideal of R is principal.
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